[PR] Temporal-Spatial-Frequency Depth Extraction of Brain-Computer Interface based on mental tasks

Updated:

Journal : Biomedical Signal Processing and Control

Introduction

prior problems:

Too many params(DNN)

CNN+LSTM : 2D → too time consuming, or no temp-spati-freq jointly embedding

Contribution :

  1. Temporal spatial frequency feature를 동시에(jointly) 추출하는 DNN 구조 제안
  2. CNN→LSTM 을 series/parallel 방법으로 구현 및 비교(series가 더 좋음)
  3. Compact CNN architecture

Method

Preprocessing :

  • 4~35Hz 6th Butterworth band-pass filter

CNN:

  • weight sharing 및 sparse connectivity가 CNN의 장점.
  • EEG는 데이터가 적기 때문에 compact가 중요.

  • Architecture
    • Compact CNN
      1. 2D temporal convolution 8*(1, 64) 사용
      2. Depthwise convolution(depth=2)으로 spatial embedding
      3. Separable Convolution (1,32) + (1,1)

      EEGNet이네?

    • Shallow CNN
      1. Shallow ConvNet

LSTM :

Two stacked LSTM layers are used

SCCRNN(series-compact-convolutional-RNN) :

image

PCCRNN :

image

Results

  • Segmentation : 1000 time points → 200 time points x 5, no overlap
  • raw signal을 바로 LSTM에 넣는건 별로 → CNN feature와 LSTM feature를 concat하는것도 별로 : 두 feature가 너무 다름:: 낮은 feature값은 노이즈로 취급당함
  • Kappa value : (acc - p) / (1-p), p=0.25 for 4classes and p=0.5 for 2 classes
  • Compact CNN을 통해 spectral-spatial feature를 뽑고, LSTM을 통해 temporal feature를 뽑아서 우리 성능이 좋다!
  • 근데 평균이 겨우 64%????

Leave a comment